sales@infinitymarketresearch.com

Artificial Intelligence In Genomic Market


Global Artificial Intelligence In Genomic Market (By Component (Hardware, Software, Services, Other Components), By Technology (Machine Learning, Deep Learning, Supervised Learning, Unsupervised Learning, Others, Computer Vision), By Functionality (Genome Sequencing, Gene Editing, Others), By Application (Drug Research and Development, Precision Medicine, Diagnostics, Others), By End-User (Pharmaceutical and Biotech Companies, Healthcare Providers, Research Centers, Other End-Users), By Region and Companies)


September 2024

Information and Communication Technology

Pages: 138

ID: IMR1241

PDF Available
Word Available
Excel Available


Artificial Intelligence In Genomic Market Overview

 

Global Artificial Intelligence In Genomic Market size is expected to be worth around USD 26.1 Billion by 2033 from USD 0.7 Billion in 2023, growing at a CAGR of 43.1% during the forecast period from 2023 to 2033.

 

Artificial intelligence (AI) in genomics refers to the use of powerful computer systems and algorithms to analyze, comprehend, and interpret massive amounts of genetic data. Genomics studies an organism's complete genetic make-up, or genome. Because human genetic information is extremely complicated, artificial intelligence enables researchers and scientists to make sense of it faster and more precisely than traditional approaches.

 

Artificial Intelligence In Genomic Market Overview

To Get An Overview , Request For Sample

 

Scientists can use AI to find patterns in DNA that may cause diseases, predict how patients will respond to therapies, and even produce tailored medication based on each individual's unique genetic code. AI-powered technologies can rapidly process massive datasets, making identifying novel insights in genomics research easier. This is particularly valuable in cancer research, therapeutic development, and understanding unusual genetics.

 

Drivers for the Artificial Intelligence In Genomic Market

 

Increasing Use of AI in Precision Medicine

 

AI is playing a critical role in the development of precision medicine, which tailors treatments based on an individual's genetic makeup. By analyzing vast genomic data, AI systems can identify patterns and correlations that help predict how patients will respond to different therapies. This enables doctors to offer more personalized and effective treatments. AI-driven solutions in genomics have revolutionized how diseases like cancer, diabetes, and cardiovascular diseases are treated, helping to improve patient outcomes.

 

Rise in Public and Private Investments

 

There has been a significant increase in investments from both public and private sectors into AI-driven genomics projects. These investments are aimed at accelerating research and development in genomics, to harness AI's ability to analyze large sets of genetic data quickly and accurately. The funding helps support the development of new AI tools and technologies that can be integrated into genomics research for faster discoveries and insights.

 

Reduction in Drug Development Time and Costs

 

AI in genomics is streamlining drug development by helping pharmaceutical companies identify new drug targets faster and more efficiently. Traditional drug development processes are often slow and expensive, but AI allows researchers to quickly sift through vast amounts of genomic data to identify potential drug candidates. By predicting which molecules are more likely to succeed, AI helps reduce the time and cost associated with bringing new drugs to market.

 

Technological Advancements

 

The development of advanced AI technologies, including machine learning (ML), deep learning, and neural networks, is another critical driver. These technologies allow for more accurate analysis of genomic data, enabling researchers to gain deeper insights into complex genetic codes. AI is also making it possible to handle unstructured data like gene sequencing results more effectively, which in turn accelerates the pace of discovery in genomics.

 

Growing Demand for Genomic Sequencing

 

As the cost of genomic sequencing continues to drop, there is increasing demand for AI to analyze the massive amounts of data generated. AI can process this data faster and more accurately than humans, leading to quicker identification of genetic variations that are linked to diseases. The ability to provide rapid, data-driven insights has been crucial in expanding the adoption of AI tools in genomics, especially in clinical diagnostics and research.

 

Increasing Healthcare Expenditures

 

With healthcare expenditures rising globally, there is a growing focus on leveraging AI to improve efficiency and reduce healthcare costs. In genomics, AI helps in early detection and prevention of diseases, which can lead to significant cost savings by reducing the need for expensive treatments. The ability of AI to predict genetic diseases early on allows healthcare providers to take preventive actions, reducing the overall burden on healthcare systems.

 

Collaborations and Partnerships

 

Collaborations between AI companies, healthcare organizations, and research institutions are boosting the development of AI applications in genomics. For instance, collaborations such as those between NVIDIA and GlaxoSmithKline (GSK) aim to improve drug and vaccine discovery through AI. These partnerships not only foster innovation but also accelerate the adoption of AI technologies in the genomics space.

 

Restraints for Artificial Intelligence In the Genomic Market

 

Data Privacy and Security Concerns

 

One of the biggest challenges in AI-driven genomics is handling sensitive genomic data. Genomic information is deeply personal and can be used to predict health risks. Thus, there are strong concerns about how this data is stored, shared, and protected. Regulatory bodies require companies to comply with strict privacy laws, like GDPR in Europe, which can slow down the adoption of AI in genomics. These concerns create barriers to scaling AI-based solutions, as any breach in data security could lead to legal and ethical consequences​.

 

High Costs and Complexity of AI Integration

 

Implementing AI technologies in genomics requires significant investments in both infrastructure and expertise. The software, hardware, and specialized personnel needed to handle large genomic datasets are expensive. For smaller companies or research institutions, the costs can be prohibitive. Moreover, integrating AI into existing systems is a complex process, requiring the right expertise to ensure that AI algorithms are reliable and accurate. This complexity often leads to longer timelines for development and higher operational costs​.

 

Limited Interpretability of AI Models

 

Another major restraint is the "black-box" nature of many AI algorithms. While AI can process vast amounts of data, understanding how it arrives at specific conclusions is difficult. In genomics, where accuracy and reliability are critical, the lack of interpretability in AI models can cause hesitation among healthcare providers and researchers. Many experts prefer models that provide clear and explainable results, especially when these results are used to guide medical decisions like disease diagnosis or drug development​.

 

Regulatory Hurdles

 

The use of AI in genomics is subject to intense scrutiny by regulatory authorities. Governments and health agencies require AI tools to meet stringent guidelines to ensure patient safety and data accuracy. These regulatory approvals can be time-consuming, and delays in getting the necessary certifications can hinder market growth. Moreover, varying regulations across different countries add complexity for companies operating in multiple regions​.

 

Lack of Skilled Workforce

 

AI in genomics is a highly specialized field, requiring a workforce skilled in both artificial intelligence and genomic sciences. There is currently a shortage of professionals who can develop, manage, and maintain AI-driven genomics tools. This talent gap poses a significant challenge to the widespread adoption of AI in this sector. The need for continuous training and development in this rapidly evolving field also adds to the difficulty​.

 

Opportunity in the Artificial Intelligence In Genomic Market

 

Increasing Adoption of Precision Medicine

 

One of the major growth opportunities for AI in the genomics market is the rise of precision medicine. AI-driven genomics allows healthcare providers to develop personalized treatment plans based on an individual’s genetic makeup. This means better-targeted therapies for diseases such as cancer and genetic disorders, which can significantly improve patient outcomes. Precision medicine, powered by AI, is revolutionizing how diseases are diagnosed and treated, which is driving demand for AI solutions in genomics.

 

Public and Private Funding for AI Genomics

 

The surge in public and private investments is also a key factor fueling market growth. Governments and organizations like the National Human Genome Research Institute are investing heavily in AI and genomics research to solve complex medical problems. This funding helps drive innovation and advances the integration of AI into genomics, making it more accessible to researchers and healthcare providers. The support from both private investors and government grants ensures continuous growth for this market, projected to expand rapidly in the coming years.

 

Advancements in AI Technologies

 

The rapid advancements in AI technologies, such as machine learning (ML), deep learning, and neural networks, are opening new avenues for AI applications in genomics. These technologies enable faster analysis of vast amounts of genetic data, making it easier to identify genetic mutations and disease patterns. AI tools can now predict disease risks, assist in drug development, and even help with gene editing techniques like CRISPR. The integration of AI into these advanced technologies presents a massive opportunity for growth in the genomics sector.

 

Expansion in Drug Discovery and Development

 

AI in genomics is transforming drug discovery and development. AI systems can rapidly analyze genetic data to identify drug targets, optimize clinical trials, and predict patient responses to treatments. By speeding up the drug development process, AI can reduce costs and bring new therapies to market faster. This makes AI-powered genomics particularly valuable for pharmaceutical and biotech companies, which are investing heavily in these technologies to remain competitive.

 

Cloud-Based Solutions and Data Accessibility

 

As genomic data grows in size and complexity, cloud-based solutions offer significant growth opportunities for the market. Cloud platforms allow researchers and healthcare providers to store, manage, and analyze large datasets more efficiently. Cloud computing enables easy access to genomic information from anywhere, facilitating collaboration between institutions and researchers worldwide. This trend is expected to drive demand for AI-powered cloud solutions in genomics, especially as the amount of genetic data continues to increase.

 

Expansion into Non-Medical Applications

 

While healthcare is the primary focus of AI in genomics, there is growing potential for AI applications in agriculture, pharmacology, and animal health. AI-driven genomics can be used to improve crop yields, develop more efficient animal breeding practices, and create new bioengineered products. This expansion into non-medical sectors offers a promising growth opportunity for AI in genomics, as industries beyond healthcare begin to explore the benefits of integrating AI into genetic research and development​.

 

Trends for Artificial Intelligence In the Genomic Market

 

Precision Medicine and Drug Discovery

 

One of the strongest trends in the AI genomics market is its growing application in precision medicine and drug discovery. AI is playing a crucial role in analyzing vast genetic data sets, enabling more personalized treatment options. Machine learning algorithms help identify specific genetic mutations that can lead to tailored therapies. This trend is expected to drive the growth of AI in genomics by enhancing the speed and accuracy of drug development, saving both time and resources for pharmaceutical companies​.

 

Integration of AI with Genome Sequencing Technologies

 

The integration of AI with genome sequencing technologies has been a game-changer in genomics. Tools like deep learning are now being used to interpret complex genomic data much faster than ever before. For example, collaborations like NVIDIA's partnership with the Broad Institute are focusing on advancing genome analysis by using AI to improve deep learning models for genome analysis​. The trend of combining AI with powerful sequencing tools will continue to accelerate the development of genomic research.

 

Growing Use of AI in Diagnostics

 

AI is increasingly being utilized for diagnostic purposes in genomics. By analyzing genetic markers, AI systems can predict the risk of certain diseases much earlier than traditional methods. AI-driven diagnostics are particularly useful for identifying rare genetic disorders and cancers, where early intervention can significantly improve outcomes. This trend is reshaping healthcare, as AI-powered diagnostics become a critical tool in preventative medicine​.

 

Cloud-Based Genomics and AI Collaboration

 

The rise of cloud computing in genomics is facilitating faster and more collaborative research. With AI tools now being integrated into cloud-based platforms, researchers can collaborate globally, speeding up genome analysis. For instance, platforms like DNAnexus are using AI to analyze genomic data on a global scale, enabling researchers to work together on complex projects without geographical constraints​. This trend is pushing AI in genomics toward new heights of innovation and discovery.

 

Ethical AI Use and Regulation Concerns

 

As AI technology becomes more ingrained in genomics, ethical concerns are also rising. These include issues around data privacy, bias in AI algorithms, and regulatory hurdles. Many regions are implementing new policies to regulate the use of AI in genomics, ensuring that the technology is used responsibly. This trend of tightening regulations will shape how AI is used in the future, particularly in areas like genetic data handling and consent.​

 

Segments Covered in the Report

 

By Component

 

o   Hardware

o   Software

o   Services

o   Other Components

 

By Technology

 

o   Machine Learning

o   Deep Learning

o   Supervised Learning

o   Unsupervised Learning

o   Others

o   Computer Vision

 

By Functionality

 

o   Genome Sequencing

o   Gene Editing

o   Others

 

By Application

 

o   Drug Research and Development

o   Precision Medicine

o   Diagnostics

o   Others

 

By End-User

 

o   Pharmaceutical and Biotech Companies

o   Healthcare Providers

o   Research Centers

o   Other End-Users

 

Segment Analysis

 

By Component Analysis

 

AI in the genomics business is divided into three components: hardware, software, and services. In 2023, the software sector had the greatest market share of almost 39.8% and is predicted to grow at the fastest CAGR of 47.1% during the forecast period. The sectors are likely to be driven by the growing use of AI-based genomics software solutions by healthcare institutions, R&D centers, and patients, as well as new product releases by market competitors.

 

Artificial Intelligence In Genomic Market By Component

To Learn More About This Report , Request For Sample

 

AI-based technology is increasingly being used in a variety of healthcare applications, including cybersecurity, clinical trials, virtual assistants, telemedicine, and fraud detection, fueling the segment's rapid expansion. Furthermore, activities in both the public and private sectors are helping to drive market expansion.

 

By Technology Analysis

 

The market is divided into two segments based on technology: machine learning and computer vision. In 2023, the machine learning sector held the biggest market share of over 62.8% and is predicted to grow at the quickest rate throughout the forecast period.

 

Machine learning has emerged as a key tool in genomics research, enabling scientists to uncover discoveries and increase their understanding of the genetic basis of health and disease. Machine learning algorithms can automate processes that would otherwise necessitate extensive manual effort, such as annotation of genetic data or identifying prospective drug targets.

 

The computer vision segment is expected to grow at a CAGR of more than 44.8% throughout the forecast period. Computer vision, which uses algorithms to evaluate and interpret images, is increasingly being applied to genomics. Computer vision is predicted to play an important role in genomics research by automating operations and producing more accurate findings.

 

By Functionality Analysis

 

The market is divided into three functional categories: genome sequencing, gene editing, and others. Among these, the genome sequencing category dominated the market in 2023 with a revenue share of 43.9%, and it is expected to maintain its dominance throughout the forecast period. The application of AI in genomics has accelerated the process of sequencing genomes to discover genetic patterns.

 

Genome sequencing businesses are cooperating with AI technology companies to speed up the process. PacBio, a genome sequencing technology supplier, cooperated with Google in January 2023. PacBio was anticipated to use Google's algorithm development, genomic analysis, and machine learning technologies to improve its existing HiFi sequencing operations and give new information based on PacBio sequencing data, according to the terms of the agreement.

 

By Application Analysis

 

The market is further categorized by application, including drug research and development, precision medicine, diagnostics, and others. In 2023, the drug discovery and development segment dominated the market, accounting for more than 31.4% of total revenue. This is due to the increased demand for novel medicines to treat infectious and chronic diseases, as well as the growing collaboration between pharmaceutical and biotechnology companies and market players offering AI in genomics solutions.

 

In contrast, the precision medicine segment is expected to increase at the fastest rate of nearly 47.2% between 2023 and 2033. AI algorithms are critical in identifying gene inheritance patterns and disease mutations. Thus, combining genetic data with illness risk assessment promotes precision medicine. Medicine development is hastened by the different uses of AI in genomics, which shortens the time it takes for a medicine to reach the market.

 

By End-User Analysis

 

In terms of end-use, pharmaceutical and biotech firms dominated the market in 2023, accounting for around 36.2% of total revenue. Artificial intelligence and machine learning are widely employed in the biotech and pharmaceutical industries for applications such as clinical data management, automated disease prediction and prevention, and biomarker identification. Artificial intelligence algorithms can forecast the toxicity of potential treatments, allowing pharmaceutical corporations to avoid investing in drugs that are likely to fail in clinical trials.

 

The healthcare providers segment is expected to have the fastest CAGR of 47.2% from 2023 to 2033. Hospitals invest heavily in personalized medical research. Furthermore, the increasing adoption of datasets containing patient health-related digital information is likely to drive segment growth in the approaching years.

 

Regional Analysis

 

In 2023, North America dominated the global AI in the genomics market, accounting for over 32.2% of revenue. This dominant position is due to the presence of various market participants, such as Danone, Abbott, Nestlé, Targeted Medical Pharma, Inc., and Mead Johnson & Company, LLC, among others.

 

North America is home to some of the world's largest and most well-funded research institutes and biotechnology businesses, all of which are significantly invested in the development of AI-powered genomics solutions. As a result, there has been a spike in the development of new software and tools for genetic data processing, promoting the expansion of the region's AI in the genomics market.

 

Competitive Analysis

 

The competitive landscape for AI in genomics is changing, with several corporations and research organizations pursuing innovation in data analysis, interpretation, and application within the genomics domain. Established biotechnology companies such as Illumina, Thermo Fisher Scientific, and IBM are key players, as they incorporate AI technologies into their sequencing systems and analytic tools to improve genomic data analysis skills.

 

Recent Developments

 

May 2023: Deep Genomics provided an artificial intelligence-driven basic model for understanding RNA biology. This model investigates the significance of tiny genetic material fragments in various diseases and identifies potential targets for innovative therapeutics.

 

In December 2023: Microsoft teamed with Genoox, a healthcare technology company. This collaboration will combine the capabilities of Microsoft Genomics' Azure Cloud with Genoox's entire cloud-based advanced platform for Next-Generation DNA Sequencing (NGS), situated in Tel Aviv, Israel.

 

Key Market Players in the Artificial Intelligence In Genomic Market

 

o   IBM

o   Microsoft Corporation

o   NVIDIA Corporation

o   DEEP GENOMICS

o   Data4Cure Inc.

o   Freenome Holdings Inc.

o   Thermo Fisher Scientific

o   Illumina Inc.

o   SOPHiA GENETICS

o   BenevolentAI

o   Fabric Genomics

o   Other Key Players

 

Report Features

Description

Market Size 2023

USD 0.7 Billion

Market Size 2033

USD 26.1 Billion

Compound Annual Growth Rate (CAGR)

43.1% (2023-2033)

Base Year

2023

Market Forecast Period

2024-2033

Historical Data

2019-2022

Market Forecast Units

Value (USD Billion)

Report Coverage

Revenue Forecast, Market Competitive Landscape, Growth Factors, and Trends

Segments Covered

By Component, Technology, Functionality, Application, End-User, and Region

Geographies Covered

North America, Europe, Asia Pacific, and the Rest of the World

Countries Covered

The U.S., Canada, Germany, France, U.K, Italy, Spain, China, Japan, India, Australia, South Korea, and Brazil

Key Companies Profiled

IBM, Microsoft Corporation, NVIDIA Corporation, DEEP GENOMICS, Data4Cure Inc., Freenome Holdings Inc., Thermo Fisher Scientific, Illumina Inc., SOPHiA GENETICS, BenevolentAI, Fabric Genomics, Other Key Players

Key Market Opportunities

Public and Private Funding for AI Genomics

Key Market Dynamics

Increasing Use of AI in Precision Medicine


Frequently Asked Questions

1. Who are the key players in the Artificial Intelligence In Genomic Market?

Answer: IBM, Microsoft Corporation, NVIDIA Corporation, DEEP GENOMICS, Data4Cure Inc., Freenome Holdings Inc., Thermo Fisher Scientific, Illumina Inc., SOPHiA GENETICS, BenevolentAI, Fabric Genomics, Other Key Players

2. How much is the Artificial Intelligence In Genomic Market in 2023?

Answer: The Artificial Intelligence In Genomic Market size was valued at USD 0.7 Billion in 2023.

3. What would be the forecast period in the Artificial Intelligence In Genomic Market?

Answer: The forecast period in the Artificial Intelligence In Genomic Market report is 2023-2033.

4. What is the growth rate of the Artificial Intelligence In Genomic Market?

Answer: Artificial Intelligence In Genomic Market is growing at a CAGR of 43.1% during the forecast period, from 2023 to 2033.

Available License Types


Single User :$4500
Multi User :$5400
Enterprise User:$6250

Related Reports

Recent Reports

Passenger Vehicles Snow Chain Market

Passenger Vehicles Snow Chain Market growth is projected to reach USD 2.7 Million in 2023, at a 5.4% CAGR by driving industry size, share, segments research, top company analysis, trends and forecast report 2024 to 2033.

Toy Crane Machines Market

Toy Crane Machines Market growth is projected to reach USD 1.6 Million in 2023, at a 8.2% CAGR by driving industry size, share, segments research, top company analysis, trends and forecast report 2024 to 2033.